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Abstract--Numerical studies are reported for the fully developed heat transfer behavior of elastic non- 
Newtonian fluids in steady laminar flow through rectangular ducts. The Reiner-Rivlin formulation with 
finite values of the second normal stress coefficient is used to model the flow. The limiting case of zero 
secondary normal stress difference corresponds to a purely viscous power-law fluid. Finite difference 
methods are developed to obtain the heat transfer results for the H2 thermal boundary condition for 
different combinations of heated and adiabatic walls. The influence of the second normal stress coefficient, 
the Reynolds number, the Peclet Number and the aspect ratio on the heat transfer are considered. It is 
found that th,e secondary flow, which is associated with the presence of second normal stresses, results in 
a significant i:acrease in the heat transfer, especially for aspect ratios of 0.5 and 1.0. The general behavior 
of the NusseLt number predicted for the Reiner-Rivlin fluid is found to be in good agreement with 

experimental results reported for viscoelastic fluids. 

IrJTRODUCTION 

The flow behavior of viscoelastic non-Newtonian 
fluids in circular and non-circular channels is of special 
engineering interesl:. In the limiting case of fully 
developed laminar flow in a circular pipe the influence 
of the non-Newtonian viscosity may come into play 
but there appears to be no influence of elastic behavior 
even for a viscoelastic fluid. In the case of non-circular 
channels the picl:ure becomes more complex, 
especially for viscoelastic fluids. For constant-prop- 
erty, adiabatic, laminar flow of Newtonian and purely 
viscous non-Newtonian fluids through non-circular 
channels of constant cross-section there exists a main 
flow velocity with no secondary motions. However, 
in the case of viscoelastic fluids the normal stresses 
imposed on the orthogonal faces, which are equal for 
Newtonian and purely viscous non-Newtonian fluids, 
are unequal. This .gives rise to secondary motions. 
This behavior has been verified analytically by Green 
and Rivlin [1] and Wheeler and Wissler [2]. 

The fluid mechanics and heat transfer behavior of 
aqueous polymer solutions has been studied exper- 
imentally for a number of years [3-7]. Indirect exper- 
imental evidence of secondary motions in the laminar 
flow of viscoelastic 5uids in non-circular channels has 
been reported [8-14]. In one case, the measured heat 
transfer performance of the viscoelastic polymer solu- 
tion in fully developed laminar flow was three to four 
times the value obtained for water [8]. A number of 
these investigators suggested that the high exper- 
imental values of heat transfer were caused by sec- 
ondary flows result:Lng from the viscoelastic behavior 
of the non-Newtonian fluids being studied. 

A comprehensive review of the laminar flow and 

heat transfer behavior of non-Newtonian power-law 
fluids in rectangular ducts has been reported by Hart- 
nett and Kostic [l 5]. More recently, Gao and Hartnett 
analysed the flow and heat transfer behavior of a 
purely viscous power-law fluid [16] and the flow 
behavior of a Reiner-Rivlin viscoelastic fluid [17] in 
fully developed laminar flow through a rectangular 
channel by finite difference methods. In general, the 
effect of the secondary flow on the primary flow rate 
and friction factor is found to be negligible and the 
Reiner-Rivlin predictions agree with the power-law 
results. 

The influence of free convection on the heat transfer 
behavior of viscoelastic fluids has been studied [18]. 
The experimental results show that for moderate con- 
centrations of the polymer solution the enhanced heat 
transfer caused by secondary flow is much stronger 
than the free convection heat transfer. In light of this, 
free convection heat transfer is not considered in this 
analysis. Instead, fully developed laminar flow in a 
rectangular duct is studied to gain some insight into 
the high experimental value of heat transfer of visco- 
elastic polymer solutions in this region. A review of 
the literature reveals that the influence on the heat 
transfer of the secondary flow associated with the fully 
developed flow of a viscoelastic fluid in a rectangular 
channel has not been studied analytically. This paper 
deals with that problem. 

MATHEMATIC FORMULATION 

1. Governin 9 equations and boundary conditions 
Consider the steady laminar flow of an incom- 

pressible non-Newtonian fluid in a long duct of rec- 
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function of the combinations of T 
heated and adiabatic walls T~ 
hydraulic diameter of the duct (4 
cross-sectional area/perimeter) Tw,m 
[m] 
heat transfer coefficient [W m -2 K -~] u, v, w 
thermal conductivity of fluid 
[W m -I  K - l ]  U 
consistency index in power-law fluid 
model V 
length of the duct in Y direction [m] 
dimensionless heated wall length, W 
where one heated long wall is equal to w 
1 ; one heated short wall is equal to x, y, z 
fl ; two heated long walls are equal )(, f 
to 2 ; two heated short walls are equal 
to 2fl Ax, Ay 
number of mesh intervals 
outer normal direction to the duct 
wall [m] 
Nusselt number, hDh/k 
pressure of the fluid [Pa] 
Peclet number, mDh/O~ O~ 2 
Prandtl number, (K/p)(~/Dh)" ~ /~ 
heat flux per unit of heating area 0~ 2 
[w m -~] 
generalized Reynolds number : fl 
p D~V¢ 2." / K ~ ~ 

temperature of the fluid element [K] ~/ 
temperature at z = 0 [K] 
average temperature of the fluid [K] p 
temperature of the wall [K] % 
average temperature of heating walls 
[K] 

dimensionless temperature 
dimensionless average temperature 
of the fluid 
dimensionless average temperature 
of heating walls 
velocity component in x, y and z 
direction respectively [m s ~] 
dimensionless secondary flow 
velocity in x direction 
dimensionless secondary flow 
velocity in y direction 
dimensionless velocity in z direction 
average axial velocity [m s -~] 
rectangular Cartesian coordinates 
dimensionless coordinates in x and y 
axes respectively 
dimensionless step size in x and y 
directions respectively. 

Greek symbols 
thermal diffusivity [m 2 s 1] 
second normal stress difference 
coefficient [N s -2 m -2] 
dimensionless second stress 
difference coefficient 
aspect ratio 
shear rate tensor component [s-~] 
apparent viscosity of non-Newtonian 
fluid [N s -1 m -2] 
density of fluid [kg m -3] 
shear stress tensor component i n j  
direction acting on the surface 
orthogonal to i direction [N m -2] 

tangular cross-section. The rectangular coordinate 
system is shown in Fig. 1 (a). 

The physical components of the conservation equa- 
tions of mass and momentum for constant properties 
(p, k, Cp) under steady flow conditions are 

Ou Ov 
~x+~yy = 0 (1) 

[ Ou Ou\ Oz~ COZxx OP 
Ox Ox 

[ Ov Ov~ OZzy Ozyy OP 
P t u~xx +v ~y) = ~-x  H 0y 0y (3) 

( Ow Ow'~ azx, Ozy= OP 
P \ U o x + V  O y ) =  Ox - - - "  - -  Oy Oz (4) 

A shear tensor of the Reiner-Rivlin model in a rec- 
tangular coordinate is defined as 

where 

*u=q~u+~2~% (5) 

Equations 0)-(4) were used to obtain the velocity 
profiles for the Reiner-Rivlin model, defined by equa- 
tion (5) [17]. For the fully developed heat transfer 
problem, it is assumed that there is no viscous dissi- 
pation, and no energy sources within the fluid. For 
flow of a Reiner-Rivlin fluid involving secondary 
flows the energy equation can be given by the fol- 
lowing • 

OT OT OT fO2T O T~ 
+ (7) 

The thermal boundary conditions to be studied 
involve the heating of one or more of the bounding 
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Fig. 1. (a) Rectangular duct. (b) Network over a rectangular duct for a temperature profile. 

walls with the remaining walls being unheated. The 
heated walls are subjected to the H2 boundary con- 
dition with constant heat flux being imposed every- 
where on the heated surfaces : 

On = constant (8) 

and the adiabatic wall boundary condit ion will be 
imposed on the remaining surfaces : 

k oT ff~ = 0. (9) 

Eight versions ofLhese boundary conditions involv- 
ing different combinations of  heated walls and adia- 
batic walls, as sho~'n in Table 1, are analysed in this 
study. 

Table 1. Different combinations of thermal boundary con- 
ditions 

Symbol Description 

4 U553 
3L 
3S ( ~  
2L 
2S 
2C 
n .  
1s 

Four (all) walls heated 
Three walls (longer version) heated 
Three walls (shorter version) heated 
Two walls (longer version) heated 
Two walls (shorter version) heated 
Two walls (comer version) heated 
One wall (longer version) heated 
One wall (shorter version) heated 
Adiabatic (unheated) wall 

Laminar  flow in a rectangular duct is designated as 
thermally fully developed when the dimensionless 
fluid temperature distribution is independent of  z : 
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Versions 

Table 2. Boundary conditions for different versions and L, 

2 2/s 

& 

1S 0 0 1 0 fl 
1L 1 0 0 0 1 
2S 0 0 1 - 1 2 f l  

2L 1 - 1 0 0 2 
2C 1 0 1 0 1 +fl 
3S 1 0 1 - I 217 + 1 
3L 1 - 1  1 0 2+fl 
4 1 - 1  I - 1  2+2fl 

and 

Oz \Tw, m -- Tin, ,] 0 (10) 

8T 
dz constant. (11) 

The non-dimensional parameters of  heat transfer are 
defined by 

T-- To hDh 
- Nu -- (12) 

q"Dh/k ' k 

where 
where 

q" = - k  U* = h(Twm-Tm). (13) 8ff 

Together with the non-dimensional quantities 
defined above, the energy equation for the flow of  a 
Reiner-Rivl in fluid becomes 

~2T ~2T +/  OT VOT~ 
- P e  t U ~ x  + = c* + T 77) w(x,;) 

(14) 

with the boundary conditions 

0T 
8~ 1 (heated walls), 

- 8~ = 0 (adiabatic walls). (15) 

Here c* is a constant obtained from an energy balance 
on the flow through the duct. The magnitude of  c* is 
dependent on the specified combinat ion of  heated and 
adiabatic walls 

and 
2 

c* = l~f iL-h.  (16) 

The details of  the thermal boundary conditions and 
the values of  Lh are shown in Table 2. 

2. Numerical approach 
The network for temperature over the rectangular 

duct is indicated in Fig. 1 (b). Fo r  a grid size of  20 x 20 
with uniform mesh intervals, (Ay/Ax = fl) is applied 
to obtain the numerical solution. 
The finite difference form of  the energy equation is 

T I + I j - 2 T , . j + L _ , j +  T , . j + , - 2 ? , j + T , j  1 p e  + 

a x  2 &v 2 

x U u 2Ax + Vu '- = c* We,/ 2Ay 

and M = 20. 
A successive 

i , j=  1,2 . . . . .  M - 1  

(17) 

over-relaxation (SOR) iteration 
method used to solve the sets of  equations (10) is 
defined by 

T,, *k+' AY2 1 + 
2Ax 2 + 2Ay 2 

x 7~/k+ w + (1 - AyPe+2 Uij~)T,,jj-k+, q 

+ [(,+ 
2Ax z + 2Ay 2 

Ax Pe+2 Uij) 

× ' r k + l + ( 1 - A x P e +  UiJ) T~:-' ,u l j  

Ax2 A y2 e * 
2AxE +2Ay 2 W~¢ 08 )  

~k+l --k --*k+l ~k iu = Tij+~o(Tij -- ~j) ,  i , j=  1,2 . . . .  , M - - 1 .  

(19) 

The boundary conditions for the heated walls are 
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L,,=~(4L,2--L,3-2Ay), for y = 0  (20) 

L,M+, =~(4L, M--L,M , - 2 A y ) ,  for 37-- 1 

(21) 

7~,,s=l(47~2~--7~-2Ax), for ~ = 0  (22) 

~ M + I j  I - - = 7 ( 4 T M u - - T M _ w - - 2 A X ) ,  for 2 = 1 .  

(23) 

The boundary conditions for the adiabatic walls are 

Ti,, = ~(47~,2 - T~,3), for 37 = 0 (24) 

T/,M+I =~(4T,,M--L,M--,),  for y =  1 (25) 

T, j  = ~ (4T2j -T3 j ) ,  for ~ = 0 (26) 

TM+,j=~(4~r~U--TM_W), for ~ = 1 .  (27) 

The values of  U~,~, V u and W u are the numerical 
results reported in [1.7]. A typical example of  the sec- 
ondary flow field for a Reiner-Rivl in  fluid in fully 
developed laminar flow through a square duct is 
shown on Fig. 2. All the data symbols represent actual 
computational  results. 

R E S U L T S  A N D  D I S C U S S I O N  

The numerical heat transfer results for hyd- 
rodynamically and thermally developed laminar flow 
for the H2 boundary condition are obtained by the 
successive over-relaxation iteration method. The over- 
relaxation coefficient eJ is set to be 1.2. The number 
of  iterations for convergence and computat ion time 
are varied from case to case. In general, as the sec- 
ondary flow increases more iterations and com- 
putat ion time are needed. The calculated Nusselt 
numbers are presented as functions of  the secondary 
normal stress coefficient, the Reynolds number R e  + , 

the power-law index n, the aspect ratio /7 and the 
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Fig. 2. Secondary flo~v for/7 = 1, ~2 = 0,0031, R e  + 
n =0.7. 

= 504, 

Peclet number. The Nusselt numbers are calculated 
for the different combinations of  heated walls using 
the energy equation in conjunction with the previously 
reported numerical values of  the velocities Wu, U u 
and V u [17]. 

Figure 3 shows the heat transfer results in the form 
of  the Nusselt number as a function of  the second 
normal stress coefficient 072 in a square duct at a power- 
law index n =0 .7 ,  R e + =  504, and P e =  25200 
( P r  + = 50). Values of  ~2 were selected to correspond 
to the estimated values of  the aqueous polymer solu- 
tions used in the experimental program [18]. The other 
parameters are unusual numbers, such as R e  = 504, 
because the convergent numerical solutions had to be 
normalized since the initially assumed quantity 
resulted in an average value of  non-dimensional vel- 
ocity W differing from unity. The details can be found 
in refs. [19] and [20]. It can be seen that the Nusselt 
number increases significantly as the second normal 
stress coefficient ~2 increases. For  the value of  072 = 
0.0103, the heat transfer is about  2.5 times greater 
than the value corresponding to a2 = 0 (power- 
law fluid) for the square duct which agrees with the 
experimental finding for viscoelastic fluids. These 
results demonstrate that the secondary flow, which is 
a result of  the second normal stress difference, has a 
major  effect on the heat transfer for non-Newtonian 
viscoelastic fluids in laminar flow through non- 
circular ducts. The stronger the secondary flow the 
higher the value of  the heat transfer. The largest Nus- 
selt numbers occur in the case where two opposite 
wall are heated for the square duct and on the 2L 
heating version for a 2 :1  duct;  the smallest Nusselt 
numbers occur on the corner wall heating versions. 

Figure 4 shows the Nusselt number as a function of  
R e  + in the square duct at a power-law index n = 0.7, 

12 ~ i 4. , , 

n=0.7 Re + =504 Pe = 2 5 2 0 0 f l = i . 0  

v 2 opposite wall vers ion 

• 4 wall version 
v 

I0  o 3 wall version / 
• 1 w a l l  v e r s i o n  / 

/ • 2C version 

Nu 

2 I i I I I 
0 . 0 0 0  0 . 0 0 2  0 . 0 0 4  0 . 0 0 6  0 . 0 0 8  0 . 0 1 0  0 , 0 1 2  

8 s 

Fig. 3. Nusselt number as a function of 42 in a square duct. 
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Fig. 4. Nusselt number as a function of Re  + in a square duct. 
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o (4) • Os) 
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n 

Fig. 6. Nusselt number as a function of n in a 2 : 1 duct. 

~2 = 0.005 and  P r  + = 50. The Nussel t  n u m b e r  cor- 
responding to R e  + = 901 is abou t  100% higher  than  
Nussel t  values at  R e  + = 302. This behavior  is con- 
sistent with experimental  findings [18]. 

Figures 5 and  6 present  the Nussel t  values as a 
funct ion of  the power- law index n for a square duct  
at  R e  + = 504, ~2 = 0.0031, and  P r  + = 50 and  for a 
2 : 1 duct  at  R e  + = 504, 42 = 0.0052, and  P r  + = 50. 
The Nussel t  numbers  increase as n decreases because 
the magni tude  of  secondary flow increases. In fact, at  

8 i i i i 

~=1.0 Re+=504 U. 2 =0.0031 Pr+=50 

v 2 opposing walls hea ted  7 
\ • 4 walls heated  

Nu \ \ [] 3 walls heated  
\ • 1 wall hea ted  

6 ~ ~ • corner  wails heated  

5 - 

4 

3 

2 I ~ I I 

0 . 5  0 . 6  0 . 7  0 . 8  0 . 9  1 . 0  

n 

Fig. 5. Nusselt number as a function ofn in a square duct. 

n equal  to 1, the results become equal  to the values 
found  for a power- law fluid [16] under  the same heat-  
ing conf igurat ion because the secondary flow vanishes 
for the assumed Reiner -Riv l in  model  at  n = 1 [1]. 
The pr imary  velocity has  a negligible influence on  the 
calculated increase in the Nussel t  n u m b e r  relative to 
the value for a power-law fluid because the pr imary  
velocity for the Reiner -Riv l in  fluid corresponds  to the 
velocity for the power-law fluid for the cases studied 
[17]. 

The Nussel t  numbers  as a funct ion of  Peclet n u m b e r  
are shown in Fig. 7 for the case of  42 = 0.0031, 
R e  + = 504, n = 0.7 and  fl = 1. The larger the Peclet 
number ,  which means  the larger the Prand t l  n u m b e r  
P r  + n u m b e r  at  a fixed R e  +, the higher  the value of  
the Nussel t  number .  

Figures 8-10 present  the Nussel t  numbers  as a func- 
t ion of  aspect ra t io  for the cases of  42 = 0.0077 and  
c~ 2 = 0.0052 with n = 0.7, R e  + = 504 and  P e  = 25200 
for the 2L, 2C and  4 heat ing configurat ions which 
may  be the mos t  interest ing cases inasmuch as they 
are associated with the m a x i m u m  and  m i n i m u m  
enhancemen t  of  heat  transfer.  For  the 2L and  2C 
versions, the m a x i m u m  value of  N u  occurs at  fl = 0.75 
for the cases studied. This also happens  for the 1L 
and  3L version. Fo r  the four-wall  version, there is a 
different tendency for the two 42 values, which means  
tha t  the second normal  stress coefficient plays a role. 
A t  the higher  value of  42, the N u  values increase as 
the aspect rat io increases and  at lower ~2, a max imum 
in the Nussel t  n u m b e r  occurs at  fl = 0.75. Fo r  the IS, 
2S and  3S versions, the results show that  the heat  
t ransfer  increases as the aspect rat io  increases due to 
the secondary flow. The influence of  aspect rat io  is 
complicated because the change of  geometry affects 
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Fig. 7. Nusselt number as a function of Pe in a square duct. 
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i i i i 
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• ~z  = 0 . 0 0 5 2  
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0.2 
2 I I I 
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# 

Fig. 9. Nusselt number as a function offl for the 2C version. 

both the distribution and the magnitude of  secondary 
flow. For the eight heating configurations studied the 
calculations reveal that the Nusselt  number for a 
Reiner-Rivl in fluid in a rectangular duct having an 
aspect ratio of  0.2 does not differ appreciably from 
the value corresponding to a power-law fluid. The 
result is in agreement with experiment [19]. The values 
of  Nusselt  number for Reiner-Rivl in fluids are pre- 
sented in Table 3. 

From the results o f  this investigation, the Reiner-  
Rivlin model  is shown to predict correct trends and 
to give quantitative estimates o f  pressure drop [17] 
and heat transfer behavior of  viscoelastic fluid. 
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Table 3. Heat t r ans~r  data for Reiner-Rivlin fluids in rectangular ducts (n = 0.7, 
Pr + = 50) 

fi Re + ~2 1S IL 2S 2L 2C 3S 3L 4 

1.0 504 0.0103 6.93 6.93 10.34 10.34 6.48 8.04 8.04 8.56 
1.0 504 0.0090 5.66 5.66 8.71 8.71 5.33 6.76 6.76 7.32 
1.0 504 0.0077 4.74 4.74 7.41 7.41 4.47 5.70 5.70 6.25 
1.0 503 0.0052 3.47 3.47 5.41 5.41 3.22 4.06 4.06 4.39 
1.0 504 0.0031 2.94 2.94 4.53 4.53 2.70 3.33 3.33 3.56 
1.0 901 0.0051 5.75 5.75 8.84 8.84 5.41 6.86 6.86 7.42 
1.0 704 0.0052 4.40 4.40 6.92 6.92 4.15 5.29 5.29 5.80 
1.0 604 0.0052 3.89 3.89 6.09 6.09 3.56 4.62 4.62 5.05 
0.7 504 0.0077 4.05 6.57 5.25 10.18 4.78 5.07 6.31 5.87 
0.5 503 0.0077 3.33 5.92 4.63 9.12 4.29 4.49 5.84 5.38 
0.2 504 0.0077 1.06 4.30 1.83 5.99 2.49 2.45 3.42 3.02 
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